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Abstract Visualizing high-dimensional data on a 2D
canvas is generally challenging. It becomes significantly
more difficult when multiple time-steps are to be
presented, as the visual clutter quickly increases.
Moreover, the challenge to perceive the significant
temporal evolution is even greater. In this paper, we
present a method to plot temporal high-dimensional
data in a static scatterplot; it uses the established PCA
technique to project data from multiple time-steps. The
key idea is to extend each individual displacement
prior to applying PCA, so as to skew the projection
process, and to set a projection plane that balances
the directions of temporal change and spatial variance.
We present numerous examples and various visual cues
to highlight the data trajectories, and demonstrate the
effectiveness of the method for visualizing temporal
data.

Keywords scatterplot; temporal data; visual clutter;
principle component analysis (PCA)

1 Introduction

A central problem in data visualization is to plot
multivariate data into a single map that conveys
valuable information about the data. Plotting high-
dimensional data on a 2D canvas is challenging, and
a plethora of techniques have been developed to
alleviate the innate clutter and reveal patterns in the
data. Real-world data is often not just multivariate,
but also varies over time, and the challenge in
effectively presenting the time-series of the data is
even greater. Many of the previous attempts to
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present temporal-multivariate data display a series of
snapshots, presented side-by-side or as an animation,
with special means used to allow the perception of
data relations between and along the series [1–3].
In this work, we present a technique to visualize

temporal-multivariate data in a single static plot. The
key idea is to find a projection plane onto which the
high-dimensional data may be projected, so as to best
present the data trajectories. After using this plane
to embed the data in 2D, a subset of trajectories
is selected and visualized with enhanced strokes
to visually convey the overall temporal progression.
The guiding assumption here is that time is not
just another dimension of the data, but a unique
dimension along which other multivariate data is
coherent, and visually perceiving the progression of
the data over time is the main need.
In our work, we use principle component analysis

(PCA) as the driving projection mechanism. The
advantage of PCA is that it is linear, and thus
facilitates intuitive interpretation of the data. Using
PCA to project the data defines a 2D coordinate
system, and a common projection plane, over which
the data visualization plot is displayed. The key
question is how to best define this projection plane.
As already mentioned, our premise is that

in visualizing temporal data, the main objective
is to clearly visualize the temporal changes, or
displacements. However, there is a trade-off between
the objectives of seeing the data points clearly, and
perceiving the displacements well. The method
that we present allows balancing of these two
objectives, and defines a projection plane which
explicitly considers both the displacements and the
data distribution in the other dimensions.
Our approach is to define a projection plane by

applying PCA on a manipulated version of the data.
We create an intermediate representation by inflating
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each displacement, which accentuates the temporal
changes, and then feed it to the PCA process. The
original high-dimensional data is then projected onto
this computed plane. Figure 1 demonstrates the effect
of carefully setting the projection plane. The figure
shows three embeddings of the same data, where in
Fig. 1(a) the projection plane is defined by applying
PCA over the data from all time-steps, in Fig. 1(b) the
same data is embedded using t-SNE, and in Fig. 1(c)
our method is employed. The data consists of time-
varying 3D points, and is clustered into five different
groups, each encoded with a different color. Two of
these clusters have significant temporal change in the
same direction. We show the points in the first time-
step, and visualize trajectories for points which have
significant displacement by drawing strokes from their
positions in the first time-step to their positions in
the second time-step. As can be seen, in Fig. 1(a) the
temporal changes are not apparent, while in Fig. 1(b),
although the temporal changes are clearly observed,
their directions are opposite, which is misleading.

Using our method in Fig. 1(c), parallelism is preserved
and data presentation is balanced between spatial
variance and temporal progression.
When there are several time-steps, the time series of

a single data element forms a trajectory. To visualize
the multitude of trajectories without creating visual
clutter, we select a subset of the trajectories
that well represent significant and interesting data
progression, and display them with colored strokes
(see Fig. 1). We evaluate our temporal scatterplots
by showing their effectiveness for various datasets,
and by comparing our visualization to established
techniques. We analyze and discuss various design
choices and demonstrate the usefulness of our method
in conveying data progression.

2 Related work

In this section, we review related topics in both high-
dimensional data visualization and temporal data
visualisation.

Fig. 1 3D temporal synthetic data, in two time steps, projected into 2D using different approaches. In the first time-step, the data is
composed of five groups of normally distributed elements, whose means are co-linear. The colors indicate the different groups. For the second
time-step, half of the points of two randomly chosen groups were significantly translated in a similar direction, while the remaining points were
only slightly translated. Points in each figure correspond to the points in the first time-step. Strokes connect a point in the first time-step to the
corresponding point in the second time-step. Strokes are drawn for a sample of the points which were traslated significantly. (a) A scatterplot
visualization using PCA projection of the whole data. The same data embedded using (b) t-SNE, and (c) a projection plane computed by our
method.
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2.1 High-dimensional visualization

Devising visual representations of high-dimensional
data has always been one of the biggest challenges in
the data visualization field [4, 5]. Many approaches to
embeding high-dimensional data in a 2D or 3D space
have been developed in recent decades. Some of the
most common represent data elements as polylines
across parallel dimension axes [6] or star plots [7].
Pixel-based visualization techniques separate the
display by each dimension, and encode values using
individual pixels [8]. Iconic figures (i.e., glyphs),
such as Chernoff faces [9], can be used to depict
high-dimensional data in a vivid manner. This work
continues the topic of point-based high-dimensional
visualization.
Scatterplots are the most popular point-based

technique for visualizing high-dimensional data; data
elements are represented as dots in 2D or 3D space.
Stemming from the classic dot visualization, the
visual design of scatterplots has been explored from
multiple directions. Wang et al. [10] study coloring
strategy for scatterplots to provide better perception
of class separation. Mayorga and Gleicher [11] present
Splatterplot, where dense point clouds are grouped
into contours to visually emphasize classes. Lu et
al. [12] attach wing-like mini-strokes to points in
scatterplots to enhance multi-class perception. Chan
et al. [13] draw small lines from points to depict
local partial derivatives (i.e., sensitivity) linking
one variable to another. These works are general
visualization techniques to improve visual perception
of scatterplots. Few of them take the temporal
dimension as a specific design consideration. The
core of our work is to find an overall projection
of the temporal and high-dimensional data, which
is not addressed by the aforementioned scatterplot
enhancement techniques.
Scatterplots have been extended to handle high

dimensions in many ways. A SPLOM (scatterplot
matrix) organizes bivariate scatterplots into a matrix
to support simultaneous observation of multiple
bivariate relationships [14]. A family of SPLOM
designs and interactions has been presented, such as
matrix navigation [15], taking nominal attributes into
account [16]. As the number of dimensions increases,
the space of bivariate combinations quickly becomes
too large for human comprehension. A SPLOM is
often assisted with navigation interactions [15], or

smart queries of the subspace [17]. Instead of showing
every possible combination of two dimensions,
scatterplots are more often used in combination with
dimensionality reduction methods, such as PCA [18],
t-SNE [19], MDS [20], UMAP [21], etc. For further
details, we refer the reader to Notato and Aupetit [22],
who surveyed various multidimensional projections,
discussing their distortions and layout enrichment.
Our work extends the conventional PCA with the
temporal dimension and correspondingly presents a
novel scatterplot method to visualize temporal high
dimensional data.

2.2 Temporal data visualization

When visualizing temporal data, there are two
major ways to represent time [23]: one is to
show the data frame by frame in an animated
diagram, and the other is to represent data over
all time steps in a static design. In accordance
with human natural experience of time, animation
easily catches researchers’ attention and has been
applied in visualizing temporal data many times
in the past [24–26]. However, when going beyond
just presenting the changes to assisting in high-
level analysis tasks (e.g., tracking temporal trends,
comparing temporal changes in multiple objects, etc.),
animation encounters many challenges [27], especially
keeping consistency over frames, e.g., keeping objects
in the same group moving consistently [28], or
applying smooth transitions between frames [29].
Without careful design, animation can be used poorly,
because people have trouble tracking more than four
moving objects at a time [30]. Unlike a dynamic
solution for temporal data, our work seeks a static
representation that squeezes dynamic features into
a static visualization, for efficient observation of
temporal trends and outliers.
Static visual design of temporal data has also

received attention over the years. For example,
Small Multiples [3] is a matrix of images depicting
change over time, where each image presents a
timeslice. Similarly, Rauber et al. [2] adapt t-SNE to
maintain spatial coherence over plots for each time
step. Juxtaposing images side by side supports easy
comparison of temporal data [1], but it comes at the
cost of mental effort to summarize temporal changes
across multiple time steps.
Some work focuses on finding a common plot into

which data from all time steps can be projected,
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while explicitly revealing the temporal features.
For example, Crnovrsanin et al. [31] transform
human indoor movements into a 2D space whose
first dimension is spatial distance from a fixed
point, and the other dimension is time. Jäckle
et al. [32] present a visualization technique that
computes temporal one-dimensional MDS plots for
multivariate data which evolve over time. Later,
Wulms et al. [33] introduce visual summaries using
1D orderings for entities moving in 2D based on
several dimensionality-reduction techniques, such as
PCA, Sammon mapping, and t-SNE. Unlike these
works, which reduce high-dimensional data to a 1D
representation and allocate the second dimension
to time, our work steers the 2D PCA projection
by temporal displacement, bringing the benefit of
best balancing data variance and temporal change
variance.

3 Method

We aim at visualizing high-dimensional data such
that the temporal aspect of it is well perceived. To
do that, the temporal aspect, or in other words—the
motion, must be visible and consistent. The latter
means that similar changes should also be presented
similarly. Figure 1(b) highlights the importance of
consistent visualization. The data points from the
orange and purple groups appear to be moving in
different directions, even though they are actually
aligned. This occurs in methods that preserve relative
distances (such as t-SNE [19] or UMAP [21]), and
not directions. For this reason, we have chosen to
base our method on the PCA technique. The method
consists of two steps. In the first one we select the
projection plane, and in the second we select the
subset of trajectories to be rendered with an enhanced
visualization.

3.1 2D embedding

Figure 2 illustrates the difference between a naive
PCA projection, where to the temporal evolution
(transition from blue to green data points) is obscured,
to the proposed one, in which this evolution is
highlighted. The process of of defining the plane
onto which the data is projected consists of three
steps:
• Intermediate data generation. The given data
is first manipulated and transformed to an

Fig. 2 Embedding example of points in R
3. The blue points are of

the first time-step, and the green ones are of the second one. Two
possible projection planes are illustrated. The right plane is selected
by applying PCA over the whole data, and best illustrates the spatial
arrangement of all the data. The left plane, however, is selected using
our method, and focuses the visualization on the temporal evolution.

intermediate data representation, where the
temporal displacements are amplified.

• Projection plane definition. A PCA is applied
to the intermediate representation to define the
projection plane.

• Dimension reduction. The original data is
projected onto the selected plane.
More formally, given n trajectories of D-

dimensional points, where each trajectory consists of
τ time steps, we seek a 2-dimensional plane in R

D,
onto which the given points are to be projected, such
that the prominent directions of change are expressed
well along with the original spatial arrangement. We
denote pt

i as the t-th time step of the i-th trajectory.
3.1.1 Intermediate data generation
In order to skew the PCA projection to the main
directions of change, we propose to apply scaling
along the trajectory, such that the displacements
are amplified, while the variance in the spatial axes
is insignificantly modified. This makes the variance
along the temporal axis larger, and thus, the temporal
changes more significant.
To do this, we first obtain the displacements along

the temporal axis: For any 1 � i � n and 2 � t � τ

define the displacement vector δt
i such that:

δt
i = pt

i − pt−1
i

Then, we scale each displacement vector by a scale
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factor α, and reconstruct the new points of each
trajectory Ti =

(
q1

i · · · qτ
i

)
to reflect the introduced

changes. Figure 3 depicts a fourfold trajectory
undergoing this process, which can be done according
to the following:

qt
i =

⎧⎨
⎩

pt
i, if t = 1

qt−1
i + α · δt

i , otherwise
(1)

We summarize some of our notations into a table:

n Number of trajectories
Ti The i-th trajectory
τ Number of time-steps
pt

i The point of the t-th time-step in Ti

qt
i The point that pt

i was translated to
α The scale factor

length(Ti) Sum of euclidean distances between consecutive
points of a trajectory

3.1.2 Scale factor
In the process of PCA, the principal components are
the directions with the largest variance. Thus, scaling
along the variance of the temporal changes highlights
exactly these desired directions. This emphasis is
controlled through the scale factor, α. A larger α

induces larger displacements and thus a direction
that is more aligned with the temporal evolution. A
smaller α would consequently give more attention to
the spatial domain. In other words, by changing the
value of α we control the ratio between the variance
along the spatial axes, and that along the direction of
temporal change. In Fig. 4, we show a series of results
of our method, with increasing values of α. As can
be seen, with larger α values, the chosen projection
direction is better aligned with the temporal evolution

Fig. 3 Displacement scaling. A trajectory of four time steps ((pt
i)

τ
t=1,

purple) is transformed into our intermediate data representation
((qt

i)
τ
t=1, red). The first time step is kept in place. The rest are

moved according to their amplified displacement. For example, the
displacement between p2

i and p3
i (δ3) is depicted. After scaling, it

remains in the same direction, but is α times larger.

(and thus the motion trails grow), but is less aligned
with the direction of spatial variance (and thus the
data points cram together).
Setting the right value of α depends on the data

and context and expresses the trade-off between the
time variance and spatial variance. Higher values of
α should be chosen when highlight of the temporal
change is desired. For example, in Figs. 11(b) and
10(b) the spatial axes have significant meaning—
they provide the viewer with an orientation and
geographical localization—which help in drawing
more insights from the data. Hence, we chose a
low α, such that both the temporal changes and
the geographic location are discernible. To facilitate
choosing the right value for α, we propose practical
bounds for it. The lower bound is of course, 0,
which eliminates temporal evolution altogether, and
is equivalent to defining the embedding according
to just the first time-step of the data. The value of
1 has more of a neutral meaning, giving no special
attention to the temporal direction over the others,
and is equivalent to applying PCA over the whole
data. This value should be used when the temporal
changes have no special interest.
For the upper bound, we propose a value such

that increasing α over it has negligible effect on
the result. We note that for very large α values,
the displacements are large enough to undoubtedly
become dominant during the PCA decomposition.
Through this insight we define αmax, the highest
value for α that would probably be required. The
effect of increasing α above the αmax is shown in
Fig. 4. In this figure, synthetic data is projected into
2D using our method with different values of α. As
can be seen, setting α = 2αmax has almost no effect
on the result, compared to α = αmax.
We set the αmax value to be one for which

the spatial magnitude and the temporal change
magnitude are even. To be more specific, for each
pair of points that belong to the same time-step,
we calculate their distance. Then, we set σ as the
standard deviation of those distances. Looking at a
given trajectory Ti, we define its length as the sum
of the euclidean distances between its consecutive
points, and denote the euclidean distance by ‖·‖. We
aim at setting αmax the length of a trajectory after
the amplification of the displacements is σ on average.
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Fig. 4 Demonstration of the scale factor α and its effect. From left to right and from top to bottom the α values are 0, 1, 4, 7, 20, 40. The
αmax value computed for this data is αmax = 20, presented in the red frame. For α = 0, the projection plane is equivalent to the one found
by considering the first time-step alone, and hence the motion is hardly discernible. For α = 1, the projection plane is equivalent to the one
found by considering all the data together, giving the temporal axes no special attention. In general, the higher the α, the more aligned is the
projection plane to the temporal motion. Using higher values than αmax yields very little change, as can be seen in the last example.

In other words, we wish for the following:

mean
(

τ−1∑
t=1

∥∥qt+1
i − qt

i

∥∥)
= σ

By the definition of qt
i we get that

∥∥qt+1
i − qt

i

∥∥ =
αmax

∥∥pt+1
i − pt

i

∥∥ and therefore:
τ−1∑
t=1

∥∥qt+1
i − qt

i

∥∥ = α
τ−1∑
t=1

∥∥pt+1
i − pt

i

∥∥ = α · length(Ti)

To obtain αmax we divide σ by the mean length of
the trajectories before the amplifications, i.e., αmax

is set as
αmax =

σ

1
n

n∑
i=1

length(Ti)

3.1.3 Discussion
The last step is rather intuitive. After obtaining
the modified trajectories Ti =

(
q1

i · · · qτ
i

)
, we apply

dimension reduction using PCA and find the plane
onto which to project the points. Then, we project the
original points of each trajectory,

(
p1

i · · · pτ
i

)n

i=1, onto
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this plane. Note that even though the plane was found
using the intermediate set

(
q1

i · · · qτ
i

)n

i=1, the direction
of the temporal changes of these intermediate points
coincides with that of the original data. This means
that we project onto a direction that is aligned better
with the temporal behaviour, but still respects the
spatial distribution.
Note that there are many other ways through

which one could perform a 2D embedding for a
given data set, such that the temporal aspect of
it is emphasized. In the following, we list a few
plausible alternatives, and discuss their differences
in relation to the proposed approach. First, as
already mentioned, one could imagine using a non-
linear method, such as t-SNE [19] or UMAP [21].
While these methods aim at reflecting respective
distributions between points they do not preserve
directions in general, which means that directions of
motions are distorted. Figures 1 and 7 convey this
notion. In Fig. 1(b), a t-SNE visualization is used.
Due to the inherent distortion, the motion of the
orange group and the purple one seem opposite, even
though they are of very similar directions in 3D. Our
visualization (Fig. 1(c)) depicts exactly that. The
same effect can be seen in Fig. 7(c), where the green
group seems to be moving in different directions,
when in fact they do not—as can be seen by our
visualization in Fig. 7(d).
Even when discussing a PCA-based embedding,

many different options can be considered for
substituting our approach. Naively, one could use the
first time-step, or the whole data together, to find the
projection plane. These approaches are equivalent
to using α = 0 and α = 1, respectively, and their
implications on the visualization are discussed in
Section 3.1.2. Another idea could be taking the first
principle component of the spatial distribution (e.g.,
by considering only the first time-step), and the first
one of the temporal motion (e.g., by considering
only displacements). This, of course, is prone to
failure due to several reasons: The two mentioned
directions could be close to parallel, there could
be two important temporal directions to be shown,
the average of the two directions could be enough
to depict the information, and many other similar
examples and degeneracies. In addition, blending
the two directions to achieve balancing between the
temporal and spatial directions is unclear, since

averaging, or rotating between the chosen directions
is ambiguous.
Finally, a prominent alternative approach would

be to facilitate Weighted-PCA (WPCA) [18]. In
principle, WPCA was developed to address data
samples with varying quality, by giving less
informative samples less weight [34]. One could
harness this approach by viewing the trajectory length
as quality—the longer the length, the higher the
weight of the points in the corresponding trajectory.
Balancing the spatial and temporal directions is also
straightforward in this approach, since it can be
directly controlled through the magnitude of the
weights. This approach, however, has a fundamental
flaw, which our proposed method does not—the
weighing process skews the spatial directions of the
data, and does not just accentuates the temporal one.
This phenomenon is depicted in Fig. 5. In this figure,
a synthetic data-set is depicted, for which there is a
clear primary principle direction (along which the red
points are scattered). Our approach (Fig. 5(c)) with
large α values generates a rendering that emphasizes
the temporal evolution direction and the primary
spatial component, as one would expect. Using
WPCA, however, gives more weight to all the points
in green, so instead of amplifying only the temporal
direction, it also assigns additional importance to the
secondary spatial principle direction, along which the
green points are scattered. Hence, the visualization
shown in Fig. 5(b) depicts the temporal direction,
like expected, but it also undesirably depicts the less
significant spatial direction.

3.2 Visualization of trajectories

To visualize the progression of the temporal data,
we display a selected number of trajectories with
enhanced graphical strokes—a tail-like design which
traces the temporal change by gradient color. To
avoid visual clutter that may be caused by visualizing
all or a large number of trajectories, we carefully
choose a subset of trajectories to display.
The selected subset of trajectories is meant to

express the variety of progression directions, focusing
on the more outstanding ones, and at the same time
avoiding visual clutter. In particular, we prioritize
long trajectories since these typically stand out, and
contribute to the overall impression of the data
progression. To prevent clutter, we avoid selecting
nearby trajectories that represent similar trajectories.
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trajectories that are desired to be displayed is equal
for all the classes. Finally, for each trajectory Ti we
define its probability to be selected as follow:

pi =
log

(
length(Ti) + 1

)
2(si + ε)

where ε is a small number that depends on the data
and ensures that we do not divide by zero. We set
p = 1 if the calculated value is greater then 1.

4 Results

To test our method, we applied it to various datasets,
one synthetic, and two real world. In the following,
we describe the datasets and show the results of
applying our method to visualize them. We also
consider alternative approaches.

4.1 Synthetic data

4.1.1 Procedure
In this example, we applied our method to a synthetic
dataset, and compared it to alternative procedures of
dimensional reduction to R

2: (i) apply PCA to the
whole data and project the data onto the obtained
planen; (ii) apply t-SNE; (iii) apply UMAP.
We synthesized data as follows. First, we created

the first time step by sampling five 3-dimensional
Gaussians, with centers one next to the other. For
each consecutive time step, we first randomly chose a
subset from the dataset. For this subset, we chose an
arbitrary direction, and moved the data along this
direction. For the rest of data, we added a small
random disturbance only. Some results using this
data are displayed in Figs. 7 and 9, where each row in
Fig. 7 uses a different dataset. The presented results
contain six time steps, with only a small sample of
the dataset points being shown. The different colors
refer to different Gaussians.
4.1.2 Comparison to other methods
In each column in Fig. 7 the data were projected using
a different method. In the first column (Figs. 7(a)
and 7(e)), we applied PCA to the data from all time
steps. As can be seen, the magnitude of the temporal
changes captured by the PCA is smaller than their
actual magnitude. In the second and third columns
(Figs. 7(b), 7(f), and 7(c), 7(g)), we projected the data
using t-SNE and UMAP, respectively. These methods
lost the spatial structure of the data, and although

temporal changes can be seen, their directions do
not reflect the direction of temporal changes in the
data. The last column shows the results of our
method. As can be seen, our method keeps both
the spatial structure and highlights the magnitude of
the temporal changes.
4.1.3 Designs
Depending on the data, one may want to highlight
different properties of the temporal progression. For
example, if we seek the temporal behavior of different
entities in the data at a certain time, it is important
that the time, or velocity of the trajectories, can be
inferred from the stroke. In some cases the first point
of the trajectory is the reference point, while in other
cases it is the last one. Thus, we propose different
designs that can be used in different cases and show
their results on our synthetic data. Figure 9 proposes
some designs.
In Fig. 9(a) the color and width of the trajectory are

related to its progression along the trajectory. In this
design we highlight the magnitude of the temporal
change at the exact time-step it occurs in. In Fig. 9(b)
we use constant colors for each time segment, i.e., for
trajectory Ti, the color of the segment connecting pt

i

to pt+1
i is the same throughout the segment. This

enables distinguishing of velocities, or time steps for
which the temporal change is larger or smaller. In
addition, using this coloring scheme, we can compare
the same time-step for different trajectories. The
width of each segment varies along the segment to
further highlight each time segment. In Fig. 9(c),
the width is relative to progress along the trajectory,
but the color performs a full gradient transition at
every segment. This visualization highlights the
association of points with their trajectories even
further.
4.2 Hans Rosling’s statistical data

In this example, we regenerate Hans Rosling’s famous
visualization of country statistical data, but in a
static form. For 144 countries, in the years 1960,
1970, 1980, 1990, 2000, 2010 the following data were
collected: population size, life expectancy, and GDP.
Therefore, we have temporal data with six time steps
in 3 dimensions. The general trend in these three
dimensions is increasing. This trend is more evident
in the life expectancy and GDP measures. Although
the size of the population increases, it is less strong
than the increases in the other two measures. The
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Fig. 7 Synthetic datasets embedded in 2D using four different methods: (a, e) naive PCA, computed over all time steps together, (b, f) t-SNE,
(c, g) UMAP, (d, h) our method. Note how temporal aspects are hardly visible using näıve PCA, and how the t-SNE and UMAP methods do
not preserve directions, making parallel trails seem dissimilar.

data is plotted in Fig. 8, where the semantic meaning
of the axes is defined heuristically.
In Fig. 8(a) the data is projected using PCA applied

to the whole data, while in Fig. 8(b) the data is
projected using our method. In Fig. 8(a), it is clear
that there is temporal change, but it seems as if it has
only one significant direction. Figure 8(b) expresses
well the fact that there are two significant directions
for the temporal change.
In Fig. 8, each color refers to a different continent

(Africa, Asia, Europe, and North America). The
vertical axis corresponds approximately to the GDP,
and the horizontal axis corresponds approximately
the life expectancy. It is clear that the countries
of Africa, Europe, and North America have similar
measurements and thus the countries in these
continents are grouped and the direction of their
temporal change is similar. The countries of Africa
have significant growth in the life expectancy, while
almost no growth in GDP. The countries of Europe
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is performed by applying PCA to the whole data.
It can be seen that only the geographic location is
expressed, and therefore the scatter plot resembles
the map of China, with a point in the center of each
province. In Fig. 10(b) the data is projected using
our method. The PCA process highlights axes which
are in essence the number of confirmed cases and
the ratio of incoming population. We see that most
prominent provinces in the figure are those which are
close to Hubei. This confirms that the provinces with
a large number of cases are those close to Hubei. In
addition, by looking at the data, we may infer that
Guangdong had an increasing amount of incoming
population, also making this province prominent.
For the USA, we looked at data from March

8th to 13th, 2020. The axes taken were the
geographic coordinates of each state, and the number
of confirmed cases. Therefore, the data here is 3-
dimensional with 6 time-steps. The data can be seen
in Fig. 11. In Fig. 11(a) the data is projected by
applying PCA to the whole data. As in Fig. 10(a),
the geographic axes are the principal components

Fig. 10 COVID-19 data in China. Each point is a province in
China, with five dimensions (longitude, latitude, immigration ratio
from the whole country, immigration ratio from Hubei (from 2020-01-
22 to 2020-01-31): (a) applying PCA to the whole data, (b) using our
method to project the points.

Fig. 11 COVID-19 in the USA. Each datum represents a state, with
3 dimensions (longitude, latitude, and confirmed case) in the second
week of March: (a) projected using applying PCA over the whole data;
(b) projected using our method.

and no change in the number of confirmed cases can
be observed. In Fig. 11(b) the data is projected
using our method. In this figure it can be seen that
the number of confirmed cases is increasing, while
it is also possible to recognize the US map. Using
insights into both geography and number of cases, it
is possible to understand that the epidemic spread
started from the East coast and West coast: more
specifically, New York, Washington, and California.

5 Evaluation

Assessing the efficacy of different visualization
methods for temporal data, e.g., animation, small
multiples, and other non-animated variants, has been
long studied and a body of experimental research has
been carried out. A closely related study, which is
important to our work, was carried out by Robertson
et al. [35]. In their experiment, they thoroughly
examined the performance of three different visual
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forms (animation, small multiples, and a static trail)
in visualizing Rosling’s dataset. They found that
animation is more fun and exciting, while non-
animated visualization, e.g., using small multiples,
allows completes tasks such as trend comparison
to be performed more efficiently than an animated
design.
In this work, rather than reproducing Robertson

et al.’s study, we focus on advocating the new
PCA projection method adapted for temporal data.
Therefore, a full experimental comparison of our
temporal scatterplots with animations is outside of
the scope of this work. Instead, we performed a small
pilot study to understand better the advantages and
disadvantages of our method.
We performed a qualitative user study with 10

participants from our local university. All of them
were graduate students in computer science, with no
or little knowledge of visualization. In the experiment,
we introduced them to Rosling’s examples in two
forms, animation and our static scatterplot. We chose
Rosling’s dataset for the experiment because it is easy
for participants to quickly understand the data. For
each participant, we showed them both the animation
and our static version in a random order. For a fair
comparison, we played the animation of Rosling’s
scatterplot with voices muted. Then we interviewed
the participants by asking a series of questions, such
as which visual form do you prefer?, what insights can
you get from the visualizations?, what (dis)advantages
do you see of each visualization?, etc.
In the result, most participants (8/10) reported

that animation is more interesting and more
comprehensive than the static plot. One participant
commented that “it is more fun to see animation!”
Three participants complained that it took them a
while to understand our scatterplots. Considering
relative merits of both forms, several participants
(6/10) said that more details can be found in the
animation than in the plot, such as the changing
trace of each country, etc. This finding is in line with
Robertson et al.’s finding that animation can better
support lower-level tasks. Most participants (9/10)
agreed that our static temporal plot provides a better
summary in a short time than the animation. One
participant specifically said “it is very impressive to
see the groups with similar trends at a first glance
in the plot, which are pretty hard for me to identify

in the animation”. Our findings in this small user
study are basically aligned with the conclusions drawn
by Robertson et al. Animation can be associated
with lower-level task performance relative to a static
alternative, e.g., tracking one or two objects over
time, comparing data between two sequential time
steps, etc. Our scatterplots are better at providing
an overall summary of the temporal data, especially
showing objects with similar trends over time.

6 Conclusions

In this paper we presented a technique to visualize
temporally progressing high-dimensional data on
a single static chart. This type of data is
commonly found in numerous real-life cases, where
corresponding samples are measured over time. More
generally, the temporal dimension can be replaced
with any dimension that represents a continuum with
dependent behavior. Being of ample relevance, many
approaches have been proposed to visualize such
data. All of these approaches complicate the viewing
process, either by presenting the data over multiple
charts, or by using animations, which take longer to
process and require special media. Quite surprisingly,
little attention has been given to depicting temporal
evolution on a single chart, without explicitly having
time as one of the plot axes.
The key insight of our method is in the embedding

stage, where we magnify the temporal change by
scaling displacements, thus affecting the process of
selecting the plane of projection. Additionally, we
offer the user natural, conveniently bounded, control
over the balance between temporal progression and
spatial variance. To visualize the progression after
embedding, our method draws inspiration from
the animation domain, where motion is expertly
expressed. The adopted principles of drawing a
single line to represent the motion of a group, or
fading a trail as it grows farther from the point
of interest, are well established in the animation
field. The combination of these two stages offers an
intuitive and simple to implement method. We have
demonstrated the former by exhibiting how insights
can be drawn intuitively from the visualization,
without any training or explanation. Finally, we have
explored several other plausible alternatives to our
approach, and have shown how our method alleviates
their disadvantages.
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The proposed method, of course, poses some
assumptions about the data. If the directions of
evolution are aligned with the spatial variance, or
if they are independent and varied, our approach
has little advantage. In the latter case, many
motion directions will actually be omitted, in order
to avoid clutter, and hence will not be conveyed
at all. In the future, we would like to examine
different approaches to group similar trajectories.
These could be through a group-size related thickness,
or by visually merging similar trajectories into one
trail. Another approach could involve selecting
which trails to show; careful consideration of trail
intersections could reduce clutter, and a perception-
based understanding of outstanding or representative
trails could convey the information better for the same
number of displayed trajectories. Finally, our work
relies on linear projection of the data. Extending the
proposed notions to established non-linear embedding
procedures (e.g., t-SNE) would be a non-trivial but
noteworthy objective. No matter in what direction,
we believe this research will open up many different
ways to efficiently represent temporal progression in
a static chart.
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